E. García Portugués, A. Meilán Vila

Skeletal representations (s-reps) have been successfully adopted to parsimoniously parametrize the shape of three-dimensional objects, and have been particularly employed in analyzing hippocampus shape variation. Within this context, we provide a fully-nonparametric dimension-reduction tool based on kernel smoothing for determining the main source of variability of hippocampus shapes parametrized by s-reps. The methodology introduces the so-called density ridges for data on the polysphere (a high-dimensional product of spheres) and involves addressing manifold computational challenges through closed formulae, efficient programming, and computational tricks.

Palabras clave: Density ridges, Dimension reduction, Directional data, Nonparametric Statistics, Skeletal representations.

Programado

GT09.NOPAR1 Sesión Invitada. Inferencia en Alta Dimensión
7 de noviembre de 2023  15:30
CC2: Sala Conferencias


Otros trabajos en la misma sesión


Política de cookies

Usamos cookies solamente para poder idenfiticarte y autenticarte dentro del sitio web. Son necesarias para el correcto funcionamiento del mismo y por tanto no pueden ser desactivadas. Si continúas navegando estás dando tu consentimiento para su aceptación, así como la de nuestra Política de Privacidad.

Adicionalmente, utilizamos Google Analytics para analizar el tráfico del sitio web. Ellos almacenan cookies también, y puedes aceptarlas o rechazarlas en los botones de más abajo.

Aquí puedes ver más detalles de nuestra Política de Cookies y nuestra Política de Privacidad.