T. H. Bui

We consider a class of convex optimization problems in a real Hilbert space that can be solved by performing a single projection, i.e., by projecting an infeasible point onto the feasible set. Our results improve those established for the linear programming setting in Nurminski (2015) by considering problems that: (i) may have multiple solutions, (ii) do not satisfy strict complementary conditions, and (iii) possess non-linear convex constraints. As a by-product of our analysis, we provide a quantitative estimate on the required distance between the infeasible point and the feasible set in order for its projection to be a solution of the problem. Our analysis relies on a "sharpness" property of the constraint set; a new property we introduce and discuss in this talk.

Palabras clave: Single-Projection, sharpness, linear programming

Programado

GT13.OPTCONT5 Sesión Invitada
9 de noviembre de 2023  15:30
HC4: Sala Sacristía


Otros trabajos en la misma sesión


Política de cookies

Usamos cookies solamente para poder idenfiticarte y autenticarte dentro del sitio web. Son necesarias para el correcto funcionamiento del mismo y por tanto no pueden ser desactivadas. Si continúas navegando estás dando tu consentimiento para su aceptación, así como la de nuestra Política de Privacidad.

Adicionalmente, utilizamos Google Analytics para analizar el tráfico del sitio web. Ellos almacenan cookies también, y puedes aceptarlas o rechazarlas en los botones de más abajo.

Aquí puedes ver más detalles de nuestra Política de Cookies y nuestra Política de Privacidad.