X. Vidal-Llana, M. Guillen

The state-of-the-art methodologies to estimate Value at Risk (VaR) and Conditional Tail Expectation (CTE) controlled by covariates are mainly based on quantile regression and do not consider explicit constraints to guarantee that non-crossing conditions across VaRs and their associated CTEs always hold. We implement a non-crossing neural network that: a) estimates VaRs and CTE simultaneously, b) is conditional on covariates and c) preserves the natural quantile level order. We implement a Non-Crossing Dual Neural Network, a deep learning model capable of handling driving data using a telematics dataset from 2015 for quantile levels 0.9, 0.925, 0.95, 0.975 and 0.99. Improvements compared to quantile regression using lineal optimization and CTE estimation of one quantile level at a time are discussed. We also conclude that our method improves a Monotone Composite Quantile Regression Neural Network approximation and that it can be implemented in many areas of risk analysis.

Palabras clave: risk evaluation, telematics, quantile regression, motor insurance, value at risk, conditional tail expectation

Programado

GT02.AR1 Análisis Riesgo
7 de noviembre de 2023  18:40
HC3: Sala Canónigos 3


Otros trabajos en la misma sesión


Política de cookies

Usamos cookies solamente para poder idenfiticarte y autenticarte dentro del sitio web. Son necesarias para el correcto funcionamiento del mismo y por tanto no pueden ser desactivadas. Si continúas navegando estás dando tu consentimiento para su aceptación, así como la de nuestra Política de Privacidad.

Adicionalmente, utilizamos Google Analytics para analizar el tráfico del sitio web. Ellos almacenan cookies también, y puedes aceptarlas o rechazarlas en los botones de más abajo.

Aquí puedes ver más detalles de nuestra Política de Cookies y nuestra Política de Privacidad.