E. T. López Sanjuán, M. Parra Arévalo, M. Martínez Pizarro

El método de excesos de un umbral de la Teoría de Valores Extremos permite estudiar las medidas de riesgo asociadas a las observaciones situadas en las colas de la distribución, siendo las más utilizadas Value at Risk (VaR) y Conditional Value at Risk (CVaR).
En este trabajo, se presenta una nueva estrategia bayesiana, basada en el algoritmo de Metropolis-Hastings (MH) para estimar ambas medidas, empleando distribuciones a priori altamente informativas, que se construyen mediante las relaciones existentes entre los parámetros de la distribución del conjunto completo de observaciones y los parámetros de la distribución límite (GPD). Esta nueva estrategia, que no sólo emplea los datos de la cola, proporciona mejores estimaciones para el VaR y CVaR que la estrategia habitual de MH. Se muestra también un ejemplo de aplicación práctica.

Palabras clave: Inferencia Bayesiana; MCMC; MH; VaR, CVaR

Programado

Métodos Bayesianos I
8 de noviembre de 2023  16:00
HC4: Sala Sacristía


Otros trabajos en la misma sesión


Política de cookies

Usamos cookies solamente para poder idenfiticarte y autenticarte dentro del sitio web. Son necesarias para el correcto funcionamiento del mismo y por tanto no pueden ser desactivadas. Si continúas navegando estás dando tu consentimiento para su aceptación, así como la de nuestra Política de Privacidad.

Adicionalmente, utilizamos Google Analytics para analizar el tráfico del sitio web. Ellos almacenan cookies también, y puedes aceptarlas o rechazarlas en los botones de más abajo.

Aquí puedes ver más detalles de nuestra Política de Cookies y nuestra Política de Privacidad.