J. Saperas Riera, G. Mateu-Figueras, J. A. Martín-Fernández

The continuous uniform distribution is a basic probability distribution defined over an interval on the real line. Its density function is a constant on that interval and 0 elsewhere. The multivariate continuous uniform distribution often appears in the literature defined over an n-dimensional rectangle, hence the name of rectangular distribution. However, it can be defined over more general bounded regions with finite measure. One of the most common applications of this model is the random numbers generation, used in uniform experimental designs.In this work we propose to adapt the continuous multivariate uniform distribution on the simplex over different bounded regions as compositional rectangles, compositional hexagons, Borel or convex sets. We will provide its density function with respect to the Aitchison measure, we will study its characteristics measures and its main algebraic properties with special emphasis on those related to the algebraic geometric structure of the simplex.

Keywords: multiuniform distribution, convex set, Aitchison measure

Scheduled

Posters
November 8, 2023  12:00 PM
CC: coffee break Hall


Other papers in the same session

Comparativa de diseños para el modelo Gamma de eliminación del alcohol.

M. T. Santos Martín, J. M. Rodríguez Díaz, I. Mariñas del Collado

Indicador de violencia de género en la malla vial de Medellín

M. A. Vélez Clavijo, H. G. Velasco Vera, J. P. Salazar Vásquez

Estimación distribuida en redes de sensores a partir de medidas deterioradas afectadas por ruidos correlados

R. Caballero-Águila, M. J. García-Ligero Ramírez, A. Hermoso-Carazo, J. Linares-Pérez

Modelos jerárquicos bayesianos para describir dependencias

M. Parra Arévalo, M. Martínez Pizarro, J. R. Martín Jiménez

Modelización y Diseño Óptimo de Experimentos para elaboración de hidrogeles portadores de fármacos de inhibición

R. Negrete Gallego, I. García-Camacha Gutiérrez, S. Pozuelo Campos, C. Martín Andreu, E. Vazquez Fernandez-Pacheco


Cookie policy

We use cookies in order to be able to identify and authenticate you on the website. They are necessary for the correct functioning of it, and therefore they can not be disabled. If you continue browsing the website, you are agreeing with their acceptance, as well as our Privacy Policy.

Additionally, we use Google Analytics in order to analyze the website traffic. They also use cookies and you can accept or refuse them with the buttons below.

You can read more details about our Cookie Policy and our Privacy Policy.